Exit seminar: Insights into Factors Influencing Radical ¾ÅÉ«ÊÓÆµ of Monolignols during Lignification and Induced Changes in Plant Secondary Metabolism
Lignin is a complex aromatic biopolymer and an important constituent in plant cell walls. The process of lignin biosynthesis, known as lignification, is poorly understood and challenging to study but has important implications in a variety of fields including sustainable energy, bioengineering, and materials science and is therefore of interest to pursue. In the final stage of lignification, H-, G-, and S-monolignols are oxidized by laccase and peroxidase enzymes to generate radical species that couple to form dimers and further oligomeric species to ultimately produce the lignin polymer. Biomimetic lignin model systems utilize in vitro oxidative coupling reactions as an important tool to further develop our understanding of this complex process. The goal of the first portion of this dissertation was to explore several aspects of monolignol oxidative coupling using high performance liquid chromatography (HPLC). These aspects included the study of relative reaction rates, both with respect to monolignol conversion and product formation, and the effects of solvent composition on product distribution. Electrospray ionization mass spectrometry (ESI-MS) was an important analytical tool for characterizing many coupling products, especially higher oligomeric compounds. The insights acquired from these experiments contributed valuable information towards a fuller understanding of the lignification process.
Plant secondary metabolites are a vital source of medicinally relevant compounds. These metabolites are involved in the plants’ highly dynamic chemical defense against environmental stressors such as UV light, predators, and pathogens. Elicitation is a process in which changes in plant secondary metabolism are induced by specific stressors to understand metabolic pathways involved in plant defense. The second portion of this dissertation focused on the study of metabolism, known as metabolomics. Methods development for sample preparation and data processing in untargeted metabolomics was applied to study elicitation of secondary metabolites in Lobelia Cardinalis hairy root cultures. This study specifically explored the potential of nanoparticles as a delivery system to enhance the elicitation effects of jasmonic acid. In this work, UHPLC-MS with high resolution accurate mass was used to evaluate the secondary metabolic response of L. Cardinalis hairy root cultures to jasmonic acid-loaded nanoparticles.


With the continuing rise in demand for energy, it is becoming increasingly necessary to invest more effort into the research and development of new materials that generate or harvest energy. One avenue of materials science is continued research into perovskites, a class of materials having a similar structure to its namesake mineral, which has seen use in piezoelectrics, photovoltaics, and sensors. An adaptation of perovskites; hybrid organic-inorganic materials/metalates, referred to here as HOIMs or just simply as halometalates, have been promising alternatives to traditional perovskites. Derived from the perovskite A2+B4+(X-2)3 formula, HOIMs following the A2+Bn+Xn+2 format where A represents the organic cation, B the metal cation, and X the halide anion are synthesized from a combination of organic and inorganic components which allows for deviations from the stricter crystal structure of the perovskites. These organic components allow for lower temperature requirements and solution processability, making them promising materials with a low barrier of entry. Because of this versatility in synthesis and structure, the corresponding tunability of their constituents provides an excellent avenue of approach for the development of novel, task-specific HOIMs the physical, optical and electronic properties of which could be carefully controlled for. While there has been and currently is research being done to elucidate the tuning of individual changes to the various cation and anion sites within halometalate materials there remains a need to combine these various approaches together into a cohesive manual for the design and fabrication of these materials for future use. The hypothesis upon which this work is structured lies in that tying together of the disparate structures which have been shown to exhibit tunability before. That is the ability to individually yet cotemporally alter specific structural characteristics of an HOIM in such a way as to select for a unique combination of performant traits, and in so doing show a verifiable, reproducible methodology. This work investigates several promising halometalate materials whose similar structures allow for simple, stepwise alterations with the intent of measuring the effect these changes have on their physical arrangement and nonlinear properties.
Small molecule metal complexes have diverse applications including usage as catalysts, single molecule magnets, photosensitizers and pharmaceuticals. Nature itself frequently takes advantage of such complexes for fundamental biological processes. For example, heme-based iron complexes provide O2 for cellular respiration, while the active site of carbonic anhydrase catalyzes the hydration of CO2. Now it is our turn to define and exploit the chemical characteristics of such metal complexes. This body of work is specific to the development and application of novel aminated ligands that, when coordinated to various metal centers, can be used for an assortment of applications. The first research project in this work reports a new benzimidazole-based ligand, which dimerizes upon coordination to afford a trinuclear Cu(I) complex. Due to the linear geometry of the Cu(I) metal centers, paired with the strong nitrogen coordinating groups, the resulting complex is resistant to oxidation in both air and water, even in the presence of strong oxidants. The complex is shown to be efficient in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and used to tag anticancer drug candidates in vitro. The complex is fully characterized, and a catalytic cycle is proposed. The next project focuses on a series of amidine-based ligands featuring chiral functional groups proximal to the coordinating site. In doing so, the reaction of achiral substrates may be influenced to promote the formation of one enantiomeric product over the other. The ligands are shown to be active in catalyzing the hydroxymethylation of silyl enol ethers in the presence of bismuth chloride in aqueous solutions. The reaction is optimized and yields are reported. In the final research project, Ni(II) dimer complexes are investigated for their magnetic behavior. For octahedral Ni(II) dimers bridged by a common anion, it has previously been established that the ferromagnetic superexchange between the Ni(II) metal centers can be enhanced as the angle of the bridging anion approaches 90 degrees. Novel imidazole and pyridine-based ligands are synthesized to add to the catalogue of chlorine-bridged complexes in the literature. Further, their bromine-bridged analogues are synthesized in order to determine the effect the identity of the halide bridge has on the magnetic properties of the complex. These three projects, while functionally different with individual aims, fundamentally share the goal of probing the chemical space that influences intrinsic properties of unique metal complexes.